TRITERPENE GLYCOSIDES FROM Hedera canariensis. VI. STRUCTURE OF L-G₁, AND L-G_{1b} GLYCOSIDES FROM LEAVES OF CANARY IVY

L. A. Yakovishin,¹ V. I. Grishkovets,¹ A. S. Shashkov,² and V. Ya. Chirva¹

Two new minor triterpene glycosides $L-G_{1}$, and $L-G_{2b}$, the $3-O-\alpha-L$ -arabinopyranosyl-28- $O-\alpha-L$ rhannopyranosyl- $(1 - 4)-O-\beta-D$ -gentiobiosyl and $3-O-\alpha-L$ -rhannopyranosyl- $(1 - 2)-O-\alpha-L$ -arabinopyranosyl-28- $O-\alpha-L$ -rhannopyranosyl- $(1 - 4)-O-(6-O-acetyl-\beta-D-glucopyranosyl)-<math>(1 - 6)-O-\beta-D$ -glucopyranosyl esters of 30-norhederagenin, respectively, are isolated from the leaves of canary ivy (Hedera canariensis Willd.). The structures of the glycosides are found by chemical methods and ¹H and ¹³C NMR spectroscopy.

We recently isolated glycosides of 30-norhederagenin, which have previously been found only in *Akebia quinata* (Lardizabalaceae) [1], from the leaves of *Hedera canariensis* (Araliaceae) [2]. In the present article, we describe the isolation and structure determination of two more minor saponins with this aglycone, the glycosides $L-G_{1'}$ (1) and $L-G_{1b}$ (2). Glycosides 1 and 2 were found in the fraction $L-G_1$, the preparation of which we previously described [3]. Careful TLC analysis of fraction $L-G_1$ on plates with Merck high-efficiency $60F_{254}$ silica gel revealed that 1 and 2 were present in addition to the previously identified glycosides $L-G_1$ and $L-G_{1a}$. The glycosides 1 and 2 were isolated by preparative chromatography of fraction $L-G_1$ on Silpearl high-efficiency microspherical silica gel by elution with chloroform—ethanol—water.

Total acid hydrolysis of 1 and 2 produced only one aglycone, identical by TLC in various solvent systems to 30norhederagenin, the aglycone of glycosides $L-E_2$ and $L-H_3$ [2], which were isolated from the leaves of canary ivy. The carbohydrate composition of 1 and 2 that was established by total acid hydrolysis consists of identical monosaccharide residues, arabinose, glucose, and rhamnose.

	29 CH2 20 20 20 20 20 20 20 20 20 20 20 20 20					
	$R_1^2 - L - Artip = 0$	27 0H				
	R ₁	R ₂				
1	Н	\leftarrow β-D-Glcp-(6-1)-β-D-Glcp-(4-1)-α-L-Rhap				
2	α - <i>L</i> -Rha $p \rightarrow$	← β-D-Glcp-(6+1)-β-D-Glcp-(4+1)-α-L-Rhap				
		16				
		OAc				
3	Н	Н				
4	α -L-Rha $p \rightarrow$	Н				
5	α - <i>L</i> -Rha p \rightarrow	← β-D-Glcp-(6-1)-β-D-Glcp-(4-1)-α-L-Rhap				

1) Simferopol' State University, 333036, Simferopol', ul. Yaltinskaya, 4; 2) N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 117913, Moscow, B-334, Leninskii prospekt, 47. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 623-626, September-October, 1999. Original article submitted July 30, 1999.

0009-3130/99/3505-0543\$22.00 °1999 Kluwer Academic/Plenum Publishers

UDC. 547.918:543.422

Alkaline hydrolysis of 2 produces progenin 4, which is identical in chromatographic mobility (TLC) to L-E₂, 30norhederagenin 3-O- α -L-rhamnopyranosyl-(1-2)-O- α -L-arabinopyranoside [2]. Arabinose and 30-norhederagenin were identified by TLC in the acid hydrolysate of the progenin from 1 (3). Thus, progenin 3 is apparently 30-norhederagenin 3-O- α -L-arabinopyranoside.

Mild alkaline hydrolysis of 2 produces glycoside 5, which is identical to $L-H_3$ from the leaves of canary ivy [2], 30norhederagenin $3-O-\alpha-L$ -rhamnopyranosyl- $(1-2)-O-\alpha-L$ -arabinopyranosyl- $28-O-\alpha-L$ -rhamnopyranosyl- $(1-4)-O-\beta-D$ glucopyranosyl- $(1-6)-O-\beta-D$ -glucopyranoside. Such changes in 2 upon treatment with an aqueous-alcohol solution of ammonia partially define its structure and suggest the presence of at least one acyl group.

The ¹H NMR spectrum of 1 contains signals for the anomeric protons of one arabinose unit, two glucose units, and one rhamnose unit. Furthermore, the chemical shifts of the ¹³C atoms in the carbohydrate chains of 1 coincide completely with those in the literature [4] for the fragments α -L-Arap \rightarrow and β -D-Glcp-(6-1)- β -D-Glcp-(4-1)- α -L-Rhap. Signals in the PMR spectra of 1 and 2 were assigned on the basis of COSY spectra and are given in the Experimental section.

The presence of signals for five anomeric protons in the PMR spectrum of 2 and the nature of the splitting for the remaining backbone protons confirm that 2 contains five monosaccharide units (two each of rhamnose and glucose and one of arabinose). Furthermore, the spectrum contains one additional 3-proton singlet (1.91 ppm) in the region characteristic of acetates (1.80-2.20 ppm).

A comparison of the ¹³C NMR spectra of L-H₃ [2] and 2 shows that the latter spectrum contains two additional signals with chemical shifts 21.4 and 171.7 ppm. These are assigned to signals of C-atoms in the $-CO-CH_3$ moiety. This confirms that 2 contains one O-acetyl group. An analysis of the magnitudes of the chemical shifts and the effects of acetylation on ¹H and ¹³C NMR spectra of carbohydrate chains [3] proves that the acetyl group is localized on C-6 of the inner Glc"" unit.

Signals for the C-atoms of the aglycones of 1 and 2 were assigned by comparing their spectrum with the spectra of $L-E_2$ and $L-H_3$ [2]. The chemical shifts for the C-atoms of the aglycones are identical. This completely confirms the nature of the aglycone in 1 and 2.

Thus, 1 and 2 are 30-norhederagenin $3-O-\alpha-L$ -arabinopyranosyl- $28-O-\alpha-L$ -rhamnopyranosyl- $(1-4)-O-\beta-D$ -gentiobiosyl and $3-O-\alpha-L$ -rhamnopyranosyl- $(1-2)-O-\alpha-L$ -arabinopyranosyl- $28-O-\alpha-L$ -rhamnopyranosyl- $(1-4)-O-(6-O-acetyl-\beta-D-glucopyranosyl)-(1-6)-O-\beta-D$ -glucopyranosyl ethers, respectively. The isolated glycosides of 30-norhederagenin are new compounds.

EXPERIMENTAL

Common procedures and hydrolysis methods have been described previously [3, 4]. The isolation of fraction L-G₁ has been described [3].

NMR spectra were obtained on Bruker WM-250 and AM-400 instruments. Solutions of glycosides in pyridine-D₅ were used.

Fraction L-G₁ (600 mg) was separated by column chromatography on Silpearl (Czech Republic) silica gel by elution with CHCl₃-ethanol (2:1) saturated with water. Yields were L-G₁, 350 mg; L-G₁, 30 mg; L-G_{1a}, 150 mg; L-G_{1b}, 15 mg.

Glycoside L-G_{1'} (1). The total acid hydrolysate of 1 contained rhamnose, arabinose, glucose, and 30-norhederagenin according to TLC.

Alkaline hydrolysis of 1 gives the progenin 3. Acid hydrolysis of 3 produces arabinose and 30-norhederagenin, which were identified by TLC with authentic samples.

¹H NMR spectrum of **1** (δ , ppm, 0 = TMS, C₅D₅N): 4.92 (d, H-1', J_{1,2} = 7.5), 4.38 (dd, H-2', J_{2,3} = 9.0), 4.02 (dd, H-3', J_{3,4} = 3.2), 4.1-4.3 (m, H-4'), 4.23 (dd, H-5e', J_{4,5e} = 3.2, J_{5a,5e} = 10.5), 3.6-3.75 (m, H-5a'), 6.11 (d, H-1", J_{1,2} = 8.5), 4.08 (t, H-2", J_{2,3} = 9.0), 4.1-4.3 (m, H-3", H-4'"), 4.00 (m, H-5"), 4.63 (H-6A"), 4.28 (H-6B"), 4.91 (d, H-1'", J_{1,2} = 8.0), 3.90 (dd, H-2'", J_{2,3} = 9.0), 4.08 (t, H-3'", J_{3,4} = 9.0), 4.29 (t, H-4'", J_{4,5} = 9.0), 3.58 (m, H-5'"), 4.16 (H-6A'"), 4.01 (H-6B'"), 5.76 (d, H-1"", J_{1,2} = 1.5), 4.65 (dd, H-2"", J_{2,3} = 3.5), 4.53 (dd, H-3"", J_{3,4} = 9.5), 4.29 (t, H-4"", J_{4,5} = 9.5), 4.87 (m, H-5""), 1.64 (d, H-6"", J_{5,6} = 6.5), 3.01 (dd, H-3, J_{2e,3} = 3.8, J_{2a,3} = 14.0), 5.39 (t, H-12, J_{11,12} = 3.5), 3.03 (dd, H-18, J_{18,19e} = 5.0, J_{18,19e} = 13.5), 2.46 (t, H-19a, J_{19a,19e} = 14.0), 4.1-4.3 (m, H-23A), 3.6-3.75 (m, H-23B), 4.70 (m, H-29A), 4.65 (m, H-29B), 1.12, 1.01, 0.91, 0.84 (all s, 4 CH₃).

The ¹³C NMR spectrum of 1 is listed in Tables 1 and 2.

G .	Compound			Compound	
C-atom	1	2	C-atom	1	2
	Ara'	Ara'		Glc''	Glc'''
1	106.7	104.5	I	96.1	96.0
2	73.1	76.0	2	74.0	74.1
3	74.8	74.0	3	78.6	78.7
4	69.7	69.3	4	70.8	71.0
5	67.0	65.4	5	78.2	78.3
			6	69.4	69.6
		Rha''		Glc'''	Glc''''
1		101.0	1	104.9	105.0
2		72.3	2	75.3	75.3
3		72.6	3	76.6	76.5
4		74.4	4	78.5	79.5
5		70.0	5	77.2	74.0
6		18.8	6	61.2	64.1
			-CO-CH ₃		171.7
			-CO-CH ₃		21.4
				Rha''''	Rha''''
			t	102.8	103.0
			2	72.5	72.6
			3	72.8	72.7
			4	74.0	74.0
			5	70.8	71.0
			6	18.8	18.8

TABLE 1. Chemical Shifts for ¹³C Atoms in Carbohydrates of Glycoside L-G_{1'} (1) and L-G_{1b} (2) (δ , ppm, 0 = TMS, C₅D₅N)

TABLE 2. Chemical Shifts of ¹³C Atoms in Aglycones of Glycosides L-G_{1'} (1) and L-G_{1b} (2) (δ , ppm, 0 = TMS, C₅D₅N)

	Compound			Compound	
C-atom	1	2	C-atom	1	2
1	39.3	39.2	16	24.0	24.0
2	26.6	26.5	17	47.3	47.4
3	81.3	81.3	18	47.7	47.8
4	43.7	43.6	19	42.0	41.9
5	47.8	47.6	20	148.6	148.6
6	18.5	18.5	21	30.2	30.2
7	33.2	33.4	22	37.7	37.8
8	40.0	40.1	23	64.1	64.0
9	48.3	48.4	24	14.2	14.1
10	37.1	37.1	25	16.3	16.4
11	24.0	24.1	26	17.7	17.8
12	123.2	123.1	27	26.5	26.4
13	143.7	143.7	28	176.3	176.4
14	42.4	42.4	29	107.6	107.6
15	28.5	28.6			

Glycoside L-G_{1b} (2). The total acid hydrolysate of 2 contained rhamnose, arabinose, glucose, and 30-norhederagenin. Alkaline hydrolysis of 2 gave progenin 4, which was identical by TLC to L- E_2 from canary ivy [2]. Mild alkaline hydrolysis

of 2 gave 5, which was identical by TLC to $L-H_3$ [2].

¹H NMR spectrum of 2 (δ , ppm, 0 = TMS, C₅D₅N): 5.10 (d, H-1', J_{1,2} = 6.0), 4.50 (dd, H-2', J_{2,3} = 7.0), 4.10 (dd, H-3', J_{3,4} = 3.5), 4.19 (m, H-4'), 3.70 (dd, H-5a', J_{5a,4} = 2.0), 4.27 (dd, H-5e', J_{5e,4} = 4.0, J_{5a,5e} = 10.0), 6.12 (d, H-1", J_{1,2} = 1.5), 4.70 (dd, H-2", J_{2,3} = 3.5), 4.60 (dd, H-3", J_{3,4} = 9.5), 4.27 (t, H-4", J_{4,5} = 9.5), 4.62 (m, H-5"), 1.59 (d, H-6", J_{5,6} = 6.5), 6.08 (d, H-1"", J_{1,2} = 8.0), 3.95 (t, H-2'", J_{2,3} = 8.5), 4.01 (t, H-3'", J_{3,4} = 9.0), 4.16 (t, H-4'", J_{4,5} = 9.0), 4.00 (m, H-5'"), 4.55 (H-6A'"), 4.23 (H-6B'"), 4.86 (d, H-1"", J_{1,2} = 8.0), 3.83 (t, H-2"", J_{2,3} = 8.5), 3.92-4.04 (m, H-3"", H-4""), 3.67 (m, H-5""), 4.49 (H-6A""), 4.39 (H-6B""), 5.40 (d, H-1'"", J_{1,2} = 1.5), 4.50 (dd, H-2'"", J_{2,3} = 3.5), 4.40 (dd, H-3'"", J_{3,4} = 9.0), 4.23 (t, H-4"", J_{4,5} = 9.5), 4.69 (m, H-5'"", J_{5,6} = 6.5), 1.52 (d, H-6'""), 5.38 (t, H-12, J_{11,12} = 3.5), 3.04 (dd, H-18, J_{18,19e} = 5.0, J_{18,19a} = 13.5), 2.45 (t, H-19a, J_{19a,19e} = 14.0), 4.05 (d, H-23A), 3.71 (d, H-23B, J_{23A,23B} = 11.0), 4.71 (m, H-29A), 4.65 (m, H-29B), 1.11, 0.99, 0.92, 0.83 (all s, 4 CH₃), 1.91 (s, -COCH₃).

The 13 C NMR of 2 is listed in Tables 1 and 2.

This work was partially funded by the International Soros Support of Education Program (ISSEP) and the International Science-Education Program (ISEP), grants No. APU073024 and No. PSU083096.

REFERENCES

- 1. A. Ikuta and H. Itokawa, *Phytochemistry*, **28**, 2663 (1989).
- A. S. Shashkov, V. I. Grishkovets, L. A. Yakovishin, I. N. Shchipanova, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 772 (1998).
- 3. L. A. Yakovishin, V. I. Grishkovets, I. N. Shchipanova, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 81 (1999).
- 4. V. I. Grishkovets, D. Yu. Sidorov, L. A. Yakovishin, A. S. Shashkov, N. N. Arnautov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 377 (1996).